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Abstract

The lateral orbitofrontal cortex (OFC) is critical for flexibly adjusting choices
when outcome values change. Anterior and posterior parts of the human lateral
OFC differ in cytoarchitecture and connectivity, but whether these subregions
make differential contributions to outcome-guided (i.e., goal-directed) behavior
remains unclear. Outcome-guided behavior requires (a) representations of stim-
ulus–outcome associations and (b) inferring the current value of options when
making decisions. Here, we test whether these two functions are differentially sup-
ported by the posterior (pOFC) and anterior (aOFC) parts of the lateral OFC,
using transcranial magnetic stimulation (TMS) to selectively disrupt activity in
functional networks centered on the pOFC and aOFC during a two-day outcome
devaluation task. Participants (n = 48) received pOFC or aOFC network-targeted
TMS either on day 1 before learning associations between visual stimuli and
sweet or savory food odors, or on day 2 before a meal that selectively deval-
ued one of these outcomes, followed by a choice test. TMS targeting pOFC,
but not aOFC, before the meal on day 2 disrupted outcome-guided behavior,
as measured by choices of stimuli predicting non-sated rewards in the post-meal
choice test. In contrast, TMS targeting aOFC, but not pOFC, before learning
on day 1 similarly impaired behavior in the post-meal choice test on day 2.
These findings demonstrate that anterior and posterior parts of the lateral OFC
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make distinct contributions to outcome-guided behavior by supporting learn-
ing of stimulus–outcome associations and inferring the current value of options,
respectively.

Keywords: outcome-guided behavior, goal-directed behavior, cognitive map,
orbitofrontal cortex

1 Introduction

Humans and animals effortlessly adapt to changing environments by flexibly adjust-
ing their behavior. This adaptability relies on outcome-guided (i.e., goal-directed)
decision-making, where individuals re-evaluate their choices in real time, simulating
potential outcomes based on changes in outcome value [1] rather than defaulting to
habitual responses. For example, a restaurant chef might anticipate that a guest could
experience an allergic reaction to certain ingredients and adjust the dish accordingly
before an issue arises. To enable this flexibility, a detailed representation of the envi-
ronment—commonly referred to as a cognitive map or model—is essential [2]. A chef
with full knowledge of ingredients and associated allergies can efficiently modify recipes
to accommodate allergies without compromising the dish.

The orbitofrontal cortex (OFC) has been proposed to play a central role in both
processes, supporting adaptive behaviors through the formation of cognitive maps
[3–5] as well as their use to infer potential outcomes [6, 7]. However, the OFC is a
heterogeneous region, comprising multiple subregions with varying anatomical and
functional properties along both medial-lateral and anterior-posterior axes [8–17]. In
humans, studies on value-based decision-making have primarily focused on the func-
tional distinctions between the medial and lateral OFC [9, 10, 14, 16, 18–20], whereas
the anterior-posterior axis has received comparatively less attention.

The current study investigates if anterior and posterior subregions of the lateral
OFC make distinct contributions to adaptive behavior in an outcome devaluation task
[4, 6, 21–32]. Outcome devaluation assesses responses to predictive stimuli following
the selective devaluation of their associated outcomes, thereby revealing the capacity
to align choices with updated goals and contexts. In outcome-specific versions of this
task, different stimuli are first associated with different but equally preferred rewards.
Next, one of the outcomes is selectively devalued (for instance by feeding it to satiety),
and then decisions between stimuli are assessed in a choice test [24, 33].

Contemporary theories of OFC function propose that OFC is required for adaptive
behavior in this task because it supports on-the-fly inferences about the current value
of the choice options [34, 35]. However, more recent work shows similar deficits in
this task when OFC activity is disrupted during initial learning of stimulus-outcome
associations [3], paralleling other tasks that require inference based on associative task
structures (e.g., sensory preconditioning) [36]. This suggests that OFC is critically
involved in forming the specific associations that link predictive stimuli to outcomes
(i.e., the task model) during initial learning [37], in line with neural recoding studies
showing such associative information is represented in the OFC [19, 38–42]. While it
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is possible that behavioral impairments following disruption of OFC activity at these
different time points reflect the same functional deficit (i.e., loss of the task model), it
is also possible that they reflect sparable functions (i.e., learning and use of the model),
which are potentially supported by different OFC subregions. Here, we directly test
these ideas by modulating the activity of two different OFC networks either before
initial learning or before the choice test of the devaluation task.

Previous studies in non-human primates suggest that anterior and posterior regions
of the OFC support distinct functions in outcome-guided behavior [24]. Our earlier
work further demonstrated that the posterior OFC in humans is critical for using stim-
ulus–outcome associations in the devaluation task [6]. Building on these findings, we
hypothesized that the anterior and posterior subregions of lateral OFC support differ-
ent functions required in the outcome devaluation task: the anterior OFC supports the
acquisition of stimulus–outcome associations, and the posterior OFC supports their
use in guiding choices. To test this, we applied network-targeted transcranial mag-
netic stimulation (TMS) either before initial training or before the choice test. This
approach allowed us to test the specific roles of anterior and posterior OFC networks
for learning associative structures and guiding choices based on current values.

Our findings reveal distinct roles for the anterior and posterior lateral OFC net-
works in outcome-guided behavior. Disruption of the posterior but not anterior lateral
OFC network before the choice test impaired adaptive behavior, whereas disruption
of the anterior but not posterior lateral OFC before initial learning similarly impaired
subsequent outcome-guided behavior in the choice test. Together, these results sug-
gest that anterior and posterior lateral OFC networks play complementary roles
for outcome-guided behavior, supporting the acquisition and use of outcome-specific
stimulus-reward associations, respectively.

2 Results

2.1 Experimental design and outcome devaluation task.

To separate the learning and use of stimulus-outcome associations, we utilized a two-
day variant of an outcome devaluation task, in which learning of the specific stimulus-
outcome pairings took place on Day 1, while selective devaluation took place on Day
2, bracketed by a pre- and post-meal choice test (Figure 1A).

On Day 1, participants learned to discriminate pairs of visual stimuli, where one
stimulus was associated with a desirable food odor (sweet or savory, equally valued
based on pre-task ratings; Figure 1B) and the other stimulus was associated with clean
air (Figure 1C, left). Participants were asked to select the stimulus associated with
any odor, meaning they were not incentivized to encode the specific stimulus-outcome
identity association to perform the discrimination task.

On Day 2, participants made choices between cues predictive of different food
odors both before and after a meal intended to selectively devalue one of the two food
odors. In this choice test, participants made preference-based choices between stimuli
predicting sweet and savory odors (Figure 1C, right). Participants received the odors
associated with the chosen stimulus during the Day 1 discrimination task and the Day
2 pre-meal choice test, but no odors were delivered during the Day 2 post-meal choice
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Fig. 1: Experimental design and outcome devaluation task. A. Experiment
timeline. On Day 1, participants received either continuous theta burst stimula-
tion (cTBS) or sham TMS before a discrimination task. On Day 2, they performed
a pre-meal choice test, received TMS (cTBS or sham), consumed a meal, and then
completed a post-meal choice test. B. Odor stimuli. One savory and one sweet food
odor (matched in pleasantness) was selected for each participant out of eight possible
options. C. Task structure. In the discrimination task, participants learned which
stimuli predicted odors (colored clouds) versus no odors (i.e., clean air, empty clouds).
In the choice test, participants selected stimuli based on learned odor associations and
their odor preference. D. TMS conditions across the three sessions. Each partic-
ipant completed three two-day sessions, receiving cTBS either before learning (Day 1)
or before the meal (Day 2), or sham on both days. This yielded three within-participant
conditions: cTBS–sham, sham–cTBS, and sham–sham (order counterbalanced). The
panel shows one example schedule. E. Trial structure of discrimination and
choice tests. Each trial started with an offer phase (3 s), presenting two visual stim-
uli paired with different outcomes, followed by a decision phase (maximum 3 s) where
participants selected one stimulus. In the discrimination task, the trial concluded with
an outcome phase (3 s) where participants received an odor or no odor, depending on
their choice.

test. Participants also reported how much they liked each odor before and after the
meal.

Each participant repeated this two-day task three separate times (i.e., “sessions”;
at least one week apart), each time learning new stimulus-food odor pairings. To
test the role of OFC networks in learning and using stimulus-outcome associations,
cTBS was administered at two different time points—either before the discrimination
task on Day 1 or before the meal on Day 2 (Figure 1D). That is, each day, partic-
ipants could receive either theta-burst stimulation (cTBS) or sham TMS, resulting
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in three within-participant conditions spread across the three sessions (Day 1–Day
2: cTBS–sham, sham–cTBS, sham–sham; order counterbalanced across participants;
Figure 1D). When applied over motor cortex, this cTBS protocol (cTBS600) reduces
cortical excitability for about 50 minutes [43].

2.2 TMS targeting dissociable anterior and posterior OFC
networks.

To test the potentially distinct functional roles of OFC subregions in learning and
using stimulus-outcome associations, TMS targeted either the anterior (aOFC) or
posterior (pOFC) portions of the lateral OFC in different groups of participants (N=23
and N=25; Figure 2A). Stimulation targets were defined on resting-state fMRI data
collected on an initial study visit (before the three experimental sessions), by seeding a
functional connectivity analysis in the right hemisphere: aOFC at MNI coordinates [34,
54, -14] and pOFC at [28, 38, -16]. We individually identified stimulation sites in lateral
prefrontal cortex (LPFC) ROIs (referred to as aOFC-conn-LPFC and pOFC-conn-
LPFC, respectively) that exhibited the highest functional connectivity with either the
aOFC or pOFC seed region (Figure 2B).

Resting-state fMRI data were collected immediately after administering TMS on
each Day 1 and Day 2 visit. We confirmed the functional dissociation between anterior
and posterior OFC networks across all resting-state fMRI scans: the aOFC-conn-LPFC
site showed significantly stronger connectivity with the aOFC seed than with the pOFC
seed (p < 2.2 × 10−16, linear mixed-effects model), and the pOFC-conn-LPFC site
showed significantly stronger connectivity with the pOFC seed than with the aOFC
seed (p < 2.2× 10−16, linear mixed-effects model) (Figure 2C).

To further assess the specificity of these networks, we compared within-network
versus between-network functional connectivity (Figure 2D). Within-network connec-
tivity was defined as the average connectivity between each OFC seed (aOFC or
pOFC) and its corresponding LPFC target, while between-network connectivity was
defined as the functional connectivity between the two LPFC targets. Across partic-
ipants, within-network connectivity was significantly stronger than between-network
connectivity (p = 7.495× 10−9, linear mixed-effects model), demonstrating that TMS
targeted dissociable OFC networks.

2.3 Discrimination learning and selective satiation effects.

Over the five blocks of the discrimination task on Day 1, choices of odor-predictive
stimuli (vs. clean air) increased significantly across blocks in both aOFC and pOFC
groups, indicating successful discrimination learning (Figure 3A; p < 2.2 × 10−16,
linear mixed-effect models). Although this increase was influenced by TMS applied
prior to the discrimination task (cTBS vs. sham; p = 1.27× 10−7), there was no effect
of cTBS on choices of odor-predicting stimuli in the last block of the discrimination
task in either group (aOFC: p = 0.605; pOFC: p = 0.967, t-test). There was also a
significant main effect of session number (1st, 2nd, 3rd; p = 1.71× 10−11) as well as a
significant session-by-TMS interaction (Figure S1; p = 1.93× 10−5).
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Fig. 2: TMS targeting dissociable anterior and posterior OFC networks. A.
OFC-LPFC networks. Seed regions in the anterior (aOFC; tangerine, MNI coordi-
nates: [34, 54, –14]) and posterior OFC (pOFC; magenta, MNI coordinates: [28, 38,
–16]), along with their corresponding connectivity-based target regions in the lateral
prefrontal cortex (LPFC), are shown on cortical surface renderings. Brain visualiza-
tions were generated using BrainNet Viewer [44], and the axial slice corresponds to
z = −16 in MNI space. B. Individual stimulation coordinates. LPFC stimulation
sites were individually selected to maximize functional connectivity with either the
aOFC or pOFC seed region. The zoomed view shows the distribution of stimulation
coordinates across participants, color-coded by group. C. Functional connectivity
estimates. Half-violin plots depict the distribution of resting-state functional connec-
tivity between LPFC stimulation sites and each OFC seed region. Each dot represents
an individual participant’s connectivity estimate, and gray lines connect seed regions
from the same subject. Boxplots indicate the median and interquartile range. Aster-
isks denote significant differences between connectivity patterns (***p < 0.001). D.
Functional connectivity within and between networks. Connectivity is com-
pared between within (aOFC-LPFC and pOFC-LPFC) and between-networks (across
LPFC targets). Asterisks denote statistical significance (*p < 0.001).
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On Day 2, participants were given the opportunity to eat a meal that was matched
to either the sweet or the savory food odor. To evaluate the effectiveness of the meal
in selectively devaluing the meal-matched odor, we examined changes in odor pleas-
antness ratings from before to after the meal. Selective satiation robustly reduced
the rated pleasantness of the meal-matched odor compared to the non-matched odor
(post-meal minus pre-meal) (p = 2.75× 10−13; Figure 3B), regardless of TMS condi-
tion (sham vs. cTBS, Day 2), stimulation target (aOFC vs. pOFC), session number
(1st, 2nd, 3rd), or sated odor type (savory/sweet) (all p > 0.05). Consistent with pre-
vious findings [6, 45, 46], these results demonstrate that disrupting OFC activity does
not affect the ability to devalue rewards themselves.

Taken together, these results show that participants in all groups and TMS con-
ditions learned the discrimination on Day 1 and that the meal on Day 2 selectively
devalued the meal-matched odor.

2.4 Posterior OFC-targeted cTBS before the meal impairs
outcome-guided behavior

Before and after the meal on Day 2, participants performed a choice test where they
chose between stimuli predicting the sated and non-sated odor. Across groups and
conditions, participants’ choices showed a significant effect of time (pre- vs post-meal),
with a significant decrease in choices of sated odor-predicting stimuli from pre- to
post-meal (Wilcoxon signed-rank test, two-sided, V = 3062.5, p = 5.31× 10−4).

To examine the contribution of the aOFC and pOFC to using the stimulus-outcome
associations learned on Day 1 to flexibly infer the current value of the choice options,
we compared choices of sated odor-predicting stimuli in this choice test between
conditions where cTBS or sham TMS was applied before the meal on Day 2 (i.e.,
“sham-sham” and “sham-cTBS”). Because post-meal choices were significantly driven
by a number of factors (pre-meal choices, selective satiation, learned stimulus value
on Day 1 (wSA − wNS), see Figure S2), we modeled post-meal choices using logis-
tic mixed-effects models (see Methods), accounting for these factors (Figure 4B; see
Figure S6 for raw data without accounting for covariates). In the pOFC group, we
found that cTBS compared to sham significantly increased choices of sated odor-
predicting stimuli (p = 0.00034), indicating poorer adaptation to the updated value
of the outcomes. No effect of cTBS was found in the aOFC group (p = 0.655), and
the difference between the aOFC and pOFC group was significant, as indicated by a
significant group-by-TMS (sham vs. cTBS on Day 2, Day 1 fixed at sham) interaction
(p = 0.00548).

To evaluate the fit of the mixed-effects models, we assessed for each group and
condition, (1) the correlation between each subject’s mean predicted probability of
choosing the sated odor-predicting stimulus and their actual mean choice rate, as
well as (2) the model’s trial-level discrimination ability via ROC analysis (Figure S5).
The high between-participant correlation indicate that the model effectively captured
individual differences in choice behavior. ROC curves further demonstrated reliable
trial-level discrimination, with AUCs ranging from 0.71 to 0.78 across conditions and
stimulation targeting groups.
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Fig. 3: Discrimination learning and selective satiation effects. A. On day 1,
participants in both the aOFC and pOFC groups learned to select odor-predictive
stimuli over five blocks of the discrimination task. Thin lines represent the average
learning trajectories of individual participants. B. Pre- and post-meal odor pleasant-
ness ratings separated by TMS condition (sham–sham, cTBS–sham, sham–cTBS),
stimulation target (aOFC vs. pOFC), and odor (sated vs. non-sated odor). These rat-
ings confirm that selective satiation effects were robust across TMS conditions within
each group. Asterisks denote statistical significant time-by-odor interaction (***p <
0.001).

We conducted additional analyses to assess whether the effect of TMS on sated
odor-predicting stimulus choices was driven by other factors, such as satiation status or
perceived TMS discomfort or intensity. The between-participant correlations between
selective pleasantness changes and post-meal choices were not affected by Day 2 cTBS
(all p > 0.05; Figure S3C), suggesting that the effect of Day 2 cTBS on choices was not
modulated by selective satiation. Moreover, TMS-related changes in post-meal choices
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Fig. 4: Posterior OFC-targeted cTBS before the meal impairs outcome
devaluation. A. To test the role of OFC networks in using stimulus-outcome asso-
ciations to infer the current value of choice options, we compared post-meal choices
on Day 2 between conditions when cTBS or sham TMS was applied before the
meal on Day 2. B. Predicted probability of choosing sated odor-predicting stimuli in
sham–sham and sham–cTBS conditions, shown separately for anterior (aOFC, tan-
gerine) and posterior (pOFC, magenta) OFC-targeting groups. Each dot represents
a participant’s average predicted probability, and gray lines connect values from the
same participant across conditions. Box plots show group-level distributions of fitted
values, with horizontal lines representing the group means. Statistical comparisons
were conducted using trial-wise mixed-effects logistic regression controlling for baseline
odor preference, satiation status, and value difference between sated and non-sated
options (wSA −wNS). A significant increase in sated odor choice was observed follow-
ing Day 2 pOFC cTBS (***p < 0.001), but not in the aOFC group (n.s.).

could not be explained by perceived TMS discomfort or intensity, as incorporating
TMS ratings into the regression models did not alter any of the findings (Figure S9).

Together, these results show that pOFC-targeted cTBS before the meal impairs
outcome-guided behavior, as indicated by the continued selection of stimuli that pre-
dict sated odors. In contrast, aOFC-targeted cTBS had no such effect, and suggesting
that pOFC but not aOFC plays a critical role in using stimulus-outcome associations
to infer the current value of choice options.

2.5 Anterior OFC targeted cTBS before discrimination
learning impairs outcome-guided behavior

The previous results show that disrupting pOFC network activity impairs behavior
in the post-meal choice test, suggesting a role of pOFC in inferring the current value
of the choice options based on stimulus-outcome associations learned on Day 1. This
deficit could be either due to a disruption of the inference process as such, or a dis-
ruption of encoded stimulus-outcome associations that are required for this inference.
If the latter is true, modulating OFC network function during discrimination learning
on Day 1 should have similar effects on post-meal choices on Day 2. Alternatively, it is
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Fig. 5:Anterior OFC-targeted cTBS before discrimination learning impairs
outcome-guided behavior. A. To test the role of OFC networks in learning spe-
cific stimulus-outcome associations, we compared post-meal choices on Day 2 between
conditions when cTBS or sham TMS was applied before the discrimination task on
Day 1. B. Predicted probability of choosing the sated odor in the post-meal test, com-
pared between sham–sham and cTBS–sham sessions, separately for anterior (aOFC,
tangerine) and posterior (pOFC, magenta) targeting groups. Each dot represents a
participant’s average probability of choosing the sated odor-predicting stimulus as pre-
dicted by the mixed-effects model, with gray lines connecting values from the same
participant across conditions. Box plots show group-level distributions of fitted values,
with horizontal lines representing the group means. Statistical comparisons were con-
ducted using trial-wise logistic mixed-effects models, controlling for value difference,
pre-meal choices, and selective satiation. A significant increase in sated odor choice
was observed following Day 1 cTBS compared to sham in the aOFC group (p < 0.05*),
but not in the pOFC group (n.s.).

possible that learning and use of stimulus-outcome associations are spatially dissocia-
ble within the primate OFC, potentially along its anterior-posterior axis. To test these
questions, we examined post-meal choices on Day 2 in sessions where cTBS or sham
TMS targeting the aOFC and pOFC network was applied before the discrimination
task on Day 1 (i.e., “sham-sham” and “cTBS-sham” conditions, Figure 5A).

As above, because choices of sated odor-predicting stimuli in the post-meal choice
test were significantly influenced by a number of factors (pre-meal choices, selective
satiation, learned stimulus value on Day 1 (wSA − wNS)), we modeled post-meal
choices using logistic fixed-effects models (Figure 5), accounting for these factors (see
Figure S7 for raw data without accounting for covariates). In the aOFC group, we
found that compared to sham, cTBS on Day 1 significantly increased choices of sated
odor-predicting stimuli in the post-meal choice test on Day 2 (Figure 5B; p = 0.015).
There was also a significant effect of session number (p = 8.5×10−5) and a significant
TMS-by-session interaction (p = 0.024), indicating that the effect of cTBS diminished
over sessions.

In contrast, similar analyses in the pOFC group revealed no significant effect of
cTBS applied before the discrimination task on Day 1on post-meal choices on Day
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2 (Figure 5B; p = 0.24). However, no significant interaction between group (aOFC
vs. pOFC) and TMS condition (sham-sham vs. cTBS-sham) was found (p = 0.37).
Again, these analyses accounted for various factors, as pre-meal choices and value
difference (but not selective satiation) were significant predictors of post-meal choices.
Model fits were evaluated using the same approach as for testing effects of TMS on
Day 2, combining across-participant correlation and ROC analysis to assess prediction
accuracy at both the participant and trial levels (Figure S7).

Taken together, these results show that aOFC-targeted cTBS before the condition-
ing on Day 1 impairs outcome-guided behavior on Day 2, as indicated by the continued
selection of stimuli that predict sated odors. In contrast, pOFC-targeted cTBS had
no such effect, suggesting that aOFC but not pOFC plays a critical role in learning
stimulus-outcome associations during the discrimination task on Day 1.

2.6 cTBS distorts low-dimensional connectivity structures

In a final step, we tested the effects of TMS on the resting-state fMRI data collected
following all TMS applications (Figure 1), along with a baseline (i.e., null) scan on the
initial study visit. To identify neural evidence of cTBS-induced effects on OFC net-
works, we applied a conditional variational autoencoder (cVAE) to these resting-state
fMRI data [47–50]. A variational autoencoder (VAE) is an unsupervised deep gener-
ative model that learns low-dimensional latent representations from high-dimensional
inputs. We used a modified version—cVAE conditioned on participant identity—which
allows the model to account for individual differences in functional connectivity profiles
while capturing stimulation-related differences in the latent space (Figure 6A).

We treated the initial resting-state scan as a reference and hypothesized that cTBS
would induce greater deviation from this baseline compared to sham. Thus, for each
resting-state scan, we computed the Euclidean distance to this baseline in the latent
space learned by the cVAE. To identify potential cTBS effects, we extracted the pat-
tern of functional connectivity between each seed or stimulation ROI (Figure 2A) and
a set of Automated Anatomical Labeling (AAL) ROIs and analyzed them separately.

Using functional connectivity patterns between the aOFC seed and AAL ROIs, we
found that cTBS was associated with a significantly greater deviation from baseline
than sham TMS (t(45) = 2.67, p = 0.011), indicating a reliable modulation effect in the
aOFC (Figure 6B). No such effect was observed when using other seed or stimulation
ROIs.

We further tested whether the condition-wise neural TMS effect derived from the
aOFC seed ROI could account for individual differences in behavior (Figure 6C). In
the aOFC group, TMS effects on connectivity were significantly correlated with the
behavioral effects of cTBS on Day 1 on post-meal choices on Day 2 (R = 0.52, p =
0.024), whereas no significant relationship was observed in the pOFC group (R = 0.14,
p = 0.54). This finding further supports the idea that anterior, but not posterior, OFC
contributed to learning of specific stimulus–outcome associations on Day 1 (Figure 5).
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Fig. 6: cTBS distorts low-dimensional connectivity structures. A. Illustration
of the conditional variational autoencoder (cVAE) used to encode functional connec-
tivity patterns (e.g., between aOFC and AAL ROIs) into a latent space, conditioned
on participant. We tested connectivity patterns for each target and seed ROI sepa-
rately. The neural network reconstructs functional connectivity patterns via encoding
and decoding layers and computes the distance from each condition (cTBS or sham) to
a reference null distribution. The neural TMS effect is defined as the distance between
cTBS and sham conditions. B. Paired distances to the null in the latent space for
cTBS vs. sham conditions using functional connectivity patterns between aOFC and
AAL ROIs. Most participants showed greater distances under cTBS, confirmed by a
paired t-test (t(45) = 2.67, p = 0.011). C. Correlation between the effect of cTBS on
post-meal choices (Day 1 comparison, sham–sham vs. cTBS–sham) and neural cTBS
effects from panel B. In the aOFC group, neural TMS effects are associated with larger
effects on post-meal choices of sated odor predicting stimuli (R = 0.52, p = 0.024),
while no such relationship is observed in the pOFC group (R = 0.14, p = 0.54).

3 Discussion

In this study, we used network-targeted TMS in the context of an outcome devaluation
task to selectively modulate activity in anterior and posterior subregions of the human
lateral OFC either during learning of stimulus-outcome associations or prior to a meal
and subsequent choice test . We found that TMS targeting the posterior OFC prior
to the meal disrupted outcome-guided behavior, as evidenced by continued choices of
stimuli predicting sated rewards in the post-meal choice test. Conversely, disrupting

12



553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

the anterior OFC before learning stimulus-outcome associations also impaired behavior
in the post-meal choice test.

These findings suggest that the OFC makes a two-fold contribution to outcome-
guided behavior. First, it supports the acquisition of stimulus-outcome associations,
that is, the construction a model of the associative task structure. Second, it is involved
in using this model to infer the current value of the choice options. Importantly, our
results suggest that these functions are carried out by different subregions of OFC.
Whereas anterior OFC contributes to model construction, posterior OFC contributes
to using this model for inference.

The involvement of OFC in model construction and use is in line with previous
correlational and causal work across species. For instance, OFC activity correlates
with specific stimulus-outcome and stimulus-stimulus associations in rats [41, 42, 51],
non-human primates [52], and humans [19, 38, 40, 53], and disruption of OFC activity
using lesions, optogenetics, pharmacological inactivation or network-targeted TMS
after learning is completed causes deficits in using these associations to guide behavior
[6, 33, 54–59]. Moreover, work in rats shows that inactivation during initial learning of
the task structure similarly impairs the later use of the model at a time when OFC is
undisturbed [3, 36]. The finding that modulation of OFC activity during both learning
and choice impairs outcome-guided behavior could be taken to suggest that the key
contribution of OFC is to learn and store the model.

However, our current results suggest that model construction and use are separate
functions that are supported by distinct parts of lateral OFC. Specifically, our findings
suggest a segregation of function within lateral OFC, such that anterior OFC con-
structs the model and posterior OFC uses the model for inferring the current value of
choice options. This contrasts with work in rats, where inactivation of the same parts
of OFC during learning and choice cause similar deficits in outcome-guided behavior.

This discrepancy between findings in rats and humans may be attributable to
species differences in OFC anatomy. The primate OFC consists of both agranular
and granular cortex, but the rat OFC is exclusively agranular [60]. Intriguingly, the
posterior OFC in primates is predominantly agranular, whereas the anterior OFC is
granular [61]. Moreover, primate anterior and posterior OFC also differ in terms of
connectivity [10, 62, 63], such that posterior OFC receives input from sensory cortices
and anterior OFC receives inputs from association cortices [61].

Our findings suggest that the anterior OFC plays a critical role in learning specific
stimulus-outcome associations even when the task does not explicitly require it. That
is, although our discrimination task involved rewarding outcomes, learning the specific
identity of rewards was not reinforced or required for performance. Such latent learn-
ing parallels previous research indicating that both humans and animals construct a
representation of the task environment even in the absence of rewards [5, 64–66]. This
information, once formed, is the foundation for outcome-guided behaviors [2, 64]. As
such, the effect of disrupting this latent learning can be revealed in later stages, when
the information becomes crucial for behavior.

Our findings align with and extend prior studies demonstrating distinct roles of
OFC subregions across various tasks and species, including outcome devaluation [24],
two-choice probabilistic tasks [52], encoding of value information [67], and economic
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decision-making [12]. Particularly relevant is work in non-human primates showing dif-
ferential roles of OFC subregions in outcome devaluation, with anterior OFC (area 11)
being involved in goal selection during choice and posterior OFC (area 13) support-
ing value updating [24]. In contrast to this work, our study focused on the differential
involvement of lateral OFC subregions in learning and using stimulus-outcome associ-
ations. Identifying such functional differences within OFC advances our understanding
of how this large and heterogeneous brain region supports learning and behavior.

Although unexpected, we found that cTBS targeting both the anterior and pos-
terior OFC disrupted discrimination learning on Day 1, especially during the first
session. This challenges the view that OFC plays no role in simple Pavlovian learning
[41, 68, 69], in line with recent rodent work suggesting that OFC’s role in Pavlovian
acquisition may be more nuanced than previously thought [70]. It is also in line with
previous work showing that OFC supports learning in tasks that involve different
reward identities, such as here [71]. However, this deficit emerged only in the first ses-
sion in our experiment, suggesting it may reflect an impairment in understanding the
basic task structure. Once the structure was learned, it could be reused in subsequent
sessions with different stimulus sets [2, 72]. To account for these effects, we included
the stimulus-level learned values of each option in the analysis of post-meal choices,
rather than assuming equal learning [6, 24].

In this regard, one limitation of this study is the within-participant design, which
enhances statistical power but complicates interpretation. For instance, participants
could learn during the first session that odor identity would be important on Day
2, potentially altering their strategies in later sessions. To test this possibility, we
compared groups of participants based on the order of cTBS and sham stimulation.
Although our findings were not affected by session order, the small sample size within
each session-order group may have limited our ability to detect subtle order effects.
Another limitation is the difference in perceived TMS intensity and discomfort between
cTBS and sham conditions as reported in the current study and our previous work
[40]. However, we found no differences in these ratings between groups receiving TMS
targeting the anterior and posterior OFC, and individual differences did not account
for the observed behavioral effects.

In conclusion, our findings reveal distinct roles of anterior and posterior OFC in
the formation and use of cognitive maps for outcome-guided behavior, advancing our
understanding of how the OFC contributes to outcome-guided behavior.

4 Methods

4.1 Participants

Eighty-eight healthy, right-handed participants (ages 18-40) with no history of psy-
chiatric or neurological disease provided written informed consent to participate in
this study. Of these, 48 participants (16 males; ages 18-40, mean = 25.17, SD =
4.14) completed all sessions. Due to a technical error, behavioral data from the cTBS-
sham session were unavailable for one participant in the posterior targeting group (see
section 4.2); however, data from the other two sessions were included in the analysis
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where applicable. MRI data for five resting-state scans were not acquired and excluded
from analysis. All participants fasted for at least four hours before each study visit.

4.2 Study design

The study consisted of eight visits (Figure 1A, D), with Day 1 and Day 2 occurring
on consecutive days. The two-day experiment was repeated across three sessions. Ses-
sions were spaced at least one week apart, with a median interval of 13.5 days, a mean
of 18.02 days (SD = 9.09), and a range of 7 to 63 days. On each Day 1 and Day
2, participants received either continuous theta-burst stimulation (cTBS, labeled C)
or sham stimulation (S). Over the three sessions, they experienced three TMS condi-
tions: cTBS-sham (CS), sham-cTBS (SC), and sham-sham (SS). The order of these
conditions was counterbalanced, with 9 participants receiving CS-SC-SS, 7 receiving
CS-SS-SC, and the remaining 32 equally assigned to one of the other four possible
sequences (SC-CS-SS, SC-SS-CS, SS-CS-SC, and SS-SC-CS).

To prevent differences in stimulation location from affecting participants’ experi-
ence across sessions, each participant received TMS targeting either the anterior or
posterior portion of the lateral OFC throughout all three sessions. Among the par-
ticipants, 16 of 32 females and 9 of 16 males received TMS targeted to the posterior
portion. Additionally, the order of satiation conditions was counterbalanced: half of the
participants received a sweet meal in their first session, while the other half received
a savory meal. The sated odor type alternated for each participant across the three
sessions (e.g., savory-sweet-savory or sweet-savory-sweet).

4.3 Screening session

After providing informed consent and completing eligibility screening, participants
rated the pleasantness of eight food odors. These odors, supplied by International
Flavors and Fragrances (New York, NY), included four savory (garlic, potato chip,
pizza, barbecue) and four sweet (chocolate, yellow cake, pineapple cake, gingerbread)
odors. In each trial, participants smelled a food odor for 2 seconds and rated their
liking on a visual analog scale ranging from “Most Disliked Sensation Imaginable”
to “Most Liked Sensation Imaginable.” Ratings were made using a scroll wheel and
keyboard press. Each odor was presented three times in a pseudo-randomized order,
and ratings were averaged per odor. Based on these ratings, two odors (one savory,
one sweet) that were pleasant (above neutral) and closely matched were selected for
the discrimination and choice tests. These odors were used across all three sessions.
Participants were excluded if no suitable odors were identified.

A custom-built, computer-controlled olfactometer was used to deliver the odors
with precise timing to nasal masks worn by participants. The olfactometer directed
medical-grade air through the headspace of amber bottles containing the odor solu-
tions at a constant flow rate of 3.2L/min. Using two independent mass flow controllers
(Alicat, Tucson, AZ), the device enabled precise dilution of the odorized air with odor-
less air. Throughout the experiment, a constant stream of odorless air was delivered,
and odorized air was mixed in at specific time points without altering the overall flow
rate or causing somatosensory stimulation.
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4.4 Initial study visit: Scan & motor threshold

We acquired a T1-weighted structural MRI scan to assist with TMS neuronavigation
and an 8 min multi-echo resting-state fMRI scan (310 volumes, TR = 1.5s) to individ-
ually define the OFC-targeted cTBS coordinates (see section 4.8). The same scanning
parameters were used for all resting-state scans.

We then measured resting motor threshold (rMT) by administering single TMS
pulses to the hand area of the left motor cortex. rMT was defined as the lowest
stimulator output required to evoke 5 visible thumb movements from 10 pulses.

4.5 Day 1: Discrimination task

Participants first underwent a TMS session (cTBS or sham, see section 4.9) followed
by a resting-state scan. They then completed five runs of a discrimination task. In each
trial, participants chose between two fractal stimuli: one associated with a savory or
sweet odor, and the other with clean air. Stimuli were displayed for 3 seconds, followed
by a choice phase (maximum 3 seconds). If participants selected a stimulus leading to
an odor, the odor was delivered for 2 seconds. The inter-trial interval ranged from 4
to 8 seconds. Each run consisted of 24 trials, using four groups of stimulus pairs: two
sets (A and B) crossed with sweet/savory odors. Each combination had three non-
overlapping stimulus pairs, resulting in 24 distinct fractals. Each pair was presented
twice to counterbalance left and right positions on the screen. Choice and response
times were recorded for each trial, and different fractals were used across the three
sessions.

4.6 Day 2: Meal consumption and choice test

Day 2 started with an odor pleasantness rating, followed by a pre-meal choice test
where participants selected between pairs of stimuli. Afterwards, they underwent a
TMS session and then had a meal carefully matched in flavor to either the sweet or
savory food odor used in the task. Following the meal, participants completed another
set of odor pleasantness ratings and a post-meal choice test. In both pre-meal and
post-meal choice tests, participants were instructed to choose based on their current
odor preferences.

The purpose of the meal was to selectively satiate one of the two food odors.
Meal items were carefully chosen to closely match the corresponding food odors, and
water was provided. Participants were given 15 minutes and instructed to eat until
they felt very full. On average, participants consumed 669.89 ± 44.16 calories (SEM).
Before analyzing the relationship between odor ratings and task behavior, ratings were
standardized within each participant across sessions.

The pre-meal choice test included 30 trials, all from set A, consisting of 3 sweet
vs. clean air pairs, 3 savory vs. clean air pairs, and 9 savory vs. sweet pairs. Each pair
was presented twice to counterbalance left and right positions on the screen. The post-
meal choice test included 60 trials from both sets A and B. In both pre- and post-meal
choice tests, similar to the discrimination task, every trial began with a pair of stimuli
presented for 3 seconds, followed by a decision phase of up to 3 seconds. In the pre-meal
choice test, if participants selected a stimulus linked to an odor, the odor was delivered
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for 2 seconds after their choices. No odors were delivered during the post-meal choice
test. Participants received the odors chosen in five randomly selected trials at the end
of the task. The inter-trial interval ranged from 4 to 8 seconds, and choice and response
times were recorded from all trials. Pre- and post-meal choices for both set A and
set B stimuli were highly correlated (Figure S4), indicating consistent choices across
sets based on odor preferences. Thus, to assess the satiation effect on choices, we used
the pre-meal average choice from set A as a session-wise odor preference baseline and
compared it with the post-meal choices.

4.7 MRI data acquisition

MRI data were acquired on a Siemens 3T PRISMA system equipped with a 64-channel
head-neck coil. Each TMS session on Day 1 and Day 2 was immediately followed
by a resting-state MRI scan. Resting-state fMRI data were collected across all seven
sessions with the same multi-echo sequence (310 volumes; TR = 1.5s; TE1-TE3 =
14.60ms, 39.04ms, 63.48ms). The short TE of the first echo is beneficial to miti-
gate signal dropout near the OFC, as demonstrated in previous studies using both
resting-state and task-based fMRI [73–76]. Other scanning parameters included: flip
angle, 72°, slice thickness, 2mm (no gap), multi-band acceleration factor 4, 60 slices
with interleaved acquisition, matrix size 104 x 104 voxels, and field of view 208mm x
208mm. A 1mm isotropic T1-weighted structural scan was acquired on Day 0 session
for neuronavigation during TMS and to aid spatial normalization.

4.8 Coordination selection for network-targeted TMS

The stimulation coordinates were computed based on the multi-echo resting-state MRI
data collected on the initial study visit. We defined our stimulation targets in the
right hemisphere’s aOFC and pOFC using MNI coordinates: aOFC [34, 54, -14] and
pOFC [28, 38, -16]. The pOFC coordinates were identical to those used in our previous
network-targeted TMS studies [6, 40, 57, 77]. Each targeted coordinate in the aOFC
and pOFC exhibited strong functional connectivity with isolated clusters in the LPFC
with peak coordinates of [44, 28, 38] and [46, 38, 14], respectively, as determined in
data from Neurosynth.org involving a sample of 1,000 subjects.

We first generated spherical masks of 8-mm radius around these four coordinates in
MNI space, each inclusively masked by the gray matter tissue probability map provided
by SPM12 (thresholded at > 0.1). We transformed these four masks to each subject’s
native space using the inverse deformation field generated during the normalization
of the T1 anatomical image. We then specified two resting-state fMRI functional
connectivity analyses (one per region) for each subject, using individual aOFC and
pOFC masks as the seed regions and motion parameters from the realignment of the
first echo as regressors of no interest. Stimulation coordinates were defined as the voxels
within the right LPFC masks with the strongest functional connectivity to the right
aOFC and pOFC seed regions, respectively. We used infrared MRI-guided stereotactic
neuronavigation (LOCALITE) to apply stimulation to these two individual LPFC
coordinates.
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4.9 Transcranial magnetic stimulation

Similar to our previous work, the target coordinates were defined as the locations
in the right LPFC with the strongest functional connectivity with the corresponding
right OFC seed regions (see details above). The Figure-eight active/passive (A/P) coil
was tilted so that the long axis was approximately perpendicular to the long axis of
the middle frontal gyrus. TMS was administered at 80% of the rMT using a cTBS
protocol. This protocol involved delivering bursts of three pulses at 50 Hz every 200
ms (5 Hz) for a total of 600 pulses over approximately 40 seconds. Stimulation was
applied using a MagPro X100 stimulator equipped with a MagPro Cool-B65 A/P
butterfly coil (MagVenture). Previous work has demonstrated that this cTBS protocol
at 80% MT has inhibitory aftereffects which persist for 50–60 min over primary motor
cortex [78]. Whereas cTBS was delivered by positioning the active side of the A/P coil
to modulate neural tissue, sham cTBS was applied with the placebo side of the A/P
coil, producing similar somatosensory and auditory experiences for the participant
without modulating neural tissue. Ag/AgCl tab electrodes were placed on participants’
foreheads, and weak electrical stimulation was applied in synchrony with the TMS
pulses to mask somatosensory effects and enhance the perceptual similarity between
cTBS and sham sessions.

Participants were informed about potential muscle twitches in the face, eyes, and
jaw during simulation. To assess tolerability, two single pulses were applied over the
stimulation coordinates before administering cTBS. Discomfort and perceived stimula-
tion intensity were evaluated after each TMS session. The cTBS sessions were generally
rated as more uncomfortable and intense compared to the sham sessions. On a scale
from 0 (not uncomfortable at all) to 10 (extremely uncomfortable), mean discomfort
ratings were 3.38 for sham and 5.8 for cTBS sessions (p = 2.2e − 16, linear mixed
effects model). Similarly, on a scale from 0 (not strong at all) to 10 (extremely strong),
mean intensity ratings were 3.79 for sham and 6.23 for cTBS sessions (p = 2.2e− 16,
linear mixed effects model). Discomfort and intensity ratings did not differ between
aOFC- or pOFC-targeted cTBS (all p > 0.6). For analyses involving cTBS effects (Day
1 or Day 2 TMS), standardized discomfort and intensity ratings were used to exam-
ine correlations or regressions against other variables, assessing if the observed cTBS
effects were driven by subjective discomfort or perceived TMS intensity, but none of
the effects can be explained by those ratings (see Figure S9).

4.10 Analysis of discrimination learning

We examined whether participants improved their performance across runs by fitting
the following mixed-effects logistic regression models:

Mdisc1 <- glmer(OdorChosen ˜ Run + (1|Ppt), data = disc_dat, family
= ’binomial’)

Mdisc0 <- glmer(OdorChosen ˜ (1|Ppt), data = disc_dat, family =
’binomial’)

In these models, OdorChosen indicates whether the odor-predictive stimulus was
selected (yes = 1), and Run ranges from 1 to 5. To assess learning across runs, we
compared a full model (Mdisc1) that included Run as a fixed effect with a reduced
model (Mdisc0) that did not.
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To further examine the effects of TMS and session number on discrimination learn-
ing, we grouped participants based on the session in which they received cTBS or
sham stimulation on Day 1 (Figure S1B). This analysis revealed that the impairment
in discrimination due to cTBS was evident only when cTBS was administered during
the first session (p < 2.2×10−16). We also tested whether the effect differed by stimu-
lation target (anterior vs. posterior OFC) but found no significant interaction or main
effect related to target location (all p > 0.05).

4.11 Modeling discrimination learning

We used a hierarchical Bayesian implementation of the Rescorla–Wagner model [79]
to quantify value learning during the discrimination task. On each trial, participants
chose between two stimuli: one predictive of an odor and one predictive of clean air.
Because stimulus pairs did not repeat across trials, we modeled learning as driven
primarily by the odor-predictive stimulus, tracking its value w over time. This value
was updated based on the prediction error—the difference between the actual outcome
(w = 1) and the expected value—scaled by a stimulus-specific learning rate α. Values
were initialized at w = 0.5, reflecting chance-level knowledge, and progressed toward
1 with learning.

Each Day 1 session consisted of five runs of 24 trials, covering 12 unique stimulus
pairs, each presented twice per run with left/right positions counterbalanced. For a
given stimulus pair, when it appeared on trial i, its value was updated according to:

wi+1 = wi + α · (1− wi),

where α denotes the learning rate for that stimulus pair.
The discrimination response on trial i, denoted Respi, was modeled as:

Respi ∼ Bernoulli(wi),

where Respi = 1 if the odor-predictive stimulus was chosen, and 0 otherwise.
We estimated a separate learning rate for each odor-predictive stimulus using a

hierarchical Bayesian framework with session-wise priors. Trial-level learning rates for
each stimulus pair, denoted αj,c,p, were modeled as:

αj,c,p ∼ Beta(aj,c · kj , (1− aj,c) · kj),
where:

• j indexes participants,
• c indexes sessions (1, 2, 3),
• p indexes cue pairs (1 to 12),
• aj,c is the subject- and session-specific mean learning rate,
• kj ∼ Gamma(1, 0.1) for each participant j = 1, . . . , nsubs.

Higher-level learning rate means were drawn from:

aj,c ∼ Beta(µc · κ, (1− µc) · κ),
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where:

• µc ∼ Beta(8, 2) is the session-specific population mean,
• κ ∼ Gamma(1, 0.1) controls the overall precision.

This modeling approach enabled us to derive individualized value trajectories for
each odor-predictive stimulus, which were subsequently used to analyze probe choices
on Day 2. Although not part of our original hypothesis—and rarely examined in
outcome devaluation studies—we found that individual choices were also influenced
by the learned value of each stimulus. The probability of choosing the SA over the
NS option increased significantly with the value difference between the two stimuli
(wSA − wNS), as reflected by a strong positive correlation (Pearson’s r = 0.92, p =
3.49 × 10−10; Figure S2). Accordingly, when evaluating the effects of cTBS (applied
on Day 1 or Day 2) on SA choices during Day 2, we included both the learned value
difference (wSA − wNS) and the selective satiation index as regressors to account for
factors influencing behavior beyond the effects of TMS.

4.12 Analysis of odor pleasantness rating

Odor pleasantness ratings were collected on a raw scale from –10 to 10. For
statistical analyses, ratings were z-scored within each participant to account for indi-
vidual differences in scale use. To evaluate whether selective satiation specifically
reduced the pleasantness of the sated odor, we calculated the change in pleasantness
(PleasantChange, defined as post-meal minus pre-meal) for each odor and session.
We then fit two linear mixed-effects models with random intercepts for participants.
The null model (MPC0) included only a random intercept, while the full model (MPC1)
included an additional fixed effect of (IsSated), a binary variable indicating whether
the odor was the sated one. Model comparison was performed using a likelihood ratio
test.

MPC0 <- lmer(PleasantChange ˜ (1 | Ppt), data = pc_data)
MPC1 <- lmer(PleasantChange ˜ IsSated + (1 | Ppt), data = pc_data)

We computed a session-wise index of the selective satiation effect, SatIdx, defined
as the difference in PleasantChange between sated and non-sated odors. To explore
whether this effect was influenced by additional factors — such as TMS condition (Day
2; sham vs. cTBS), TMS target site (aOFC vs. pOFC), session number (1st, 2nd, 3rd),
or sated odor type (savory/sweet) — we fit a second set of linear mixed-effects models.
Each model included one of these predictors and was compared against the same null
model MSatIdx0. For example, to test the influence of TMS condition (TMScond),
we fit and compared the following models:

MSatIdx0 <- lmer(SatIdx ˜ (1 | Ppt), data = SatIdxDat)
MSatIdx1 <- lmer(SatIdx ˜ TMScond + (1 | Ppt), data = SatIdxDat)

Moreover, the proportion of SA choices was significantly correlated with the pleas-
antness difference between sated and non-sated odors, both before and after the meal
(Figure S3A, B), indicating that choices reflected relative odor preferences as expected.
To quantify the behavioral impact of subjective value changes, we computed a “selec-
tive satiation index” by subtracting the change in pleasantness ratings for non-sated
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odors from those for sated odors (post-meal minus pre-meal). This index was signif-
icantly correlated with the corresponding change in SA choices (Pearson’s r = 0.46,
p = 8.3×10−4; Figure S3C), further supporting a link between subjective devaluation
and behavioral change.

All mixed-effects models were fit using the lme4 package in R.

4.13 Analysis of choice test responses

We analyzed the Day 2 choice test data on sweet–savory choices, and split these
analyses by TMS target site (aOFC and pOFC groups). As noted in Section 4.6,
we used the pre-meal average choice for each session as a baseline measure of odor
preference BasePref.

To assess the effect of Day 2 TMScond (Day 2; sham vs. cTBS) on choices involving
the sated odor, we analyzed the trial-wise data using logistic mixed-effects modeling.
The models included the following covariates: (1) BasePref, the pre-meal baseline
preference; (2) SatIdx, the session-wise reduction in pleasantness of the sated odor;
and (3) ValueDiff, the value difference between the two choice options on each trial,
reflecting discrimination learning from Day 1 (see Section 4.11). For each target group
(aOFC and pOFC), we compared a full model (Mchoice1) that included the TMS
condition (TMScond) with a reduced model (Mchoice0) that did not:

Mchoice1 <- glmer(Choice ˜ TMScond + ValueDiff + SatIdx + BasePref
+ (1|Ppt), data = ChoiceDat, family = ’binomial’)

Mchoice0 <- glmer(Choice ˜ ValueDiff + SatIdx + BasePref + (1|Ppt),
data = ChoiceDat, family = ’binomial’)

In these models, Choice was a binary outcome indicating whether the partici-
pant chose the sated odor (1) or the non-sated odor (0). To further examine whether
the effect of TMS condition varied by stimulation site, we tested an additional model
that included an interaction term between TMScond and TMStarget. We used the
fitted function in R to extract trial-level predicted choices based on the best-fitting
model for each group. These predicted values were then averaged within each partici-
pant to estimate the model-derived probability of choosing the sated odor, as shown
in Figure 4. The Day 1 TMS effect was analyzed in a similar manner, using the con-
trast between Day 1 sham and cTBS while holding Day 2 TMS constant at sham, as
shown in Figure 5.

4.14 Multi-echo MRI data processing

Preprocessing of the multi-echo resting-state fMRI data involved several steps. First,
all functional images from the smallest echo across all rs-fMRI runs were realigned to
the first volume of the first echo, and the resulting voxel-to-world mapping matrix was
applied to the other two echoes, volume by volume. All functional images were then
resliced for each echo. Next, the images across the three echoes were combined using
temporal signal-to-noise ratio (tSNR) weighting, following parallel-acquired inhomo-
geneity desensitized (PAID) approach [74]. Specifically, voxel-wise tSNR maps were
computed for each echo, multiplied by the echo time (TE), and normalized across the
three echoes to generate weight maps. These weight maps were then used to combine
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the resliced images by multiplying each volume by its respective weight map. Lastly,
the combined data underwent coregistration, normalization, and smoothing using a 6
mm FWHM Gaussian kernel.

We analyzed participants’ motion during the resting-state scan after different types
of TMS (sham vs. cTBS) and stimulation targeted locations (anterior vs. posterior
OFC). Framewise displacement (FD) was calculated per volume and summed across
volumes [80]. No significant differences were observed between TMS types or stimu-
lation locations (all p > 0.8). FD for cTBS was 38.3mm (±10.8mm) at the anterior
OFC and 41.3mm (±17.8mm) at the posterior OFC, while for sham, FD was 41.0mm
(±16.7mm) at the anterior OFC and 39.6mm (±15.8mm) at the posterior OFC.

4.15 Resting-state functional connectivity analysis

Following echo combination and initial preprocessing, we further denoised the resting-
state fMRI data prior to functional connectivity (FC) analysis by applying voxel-wise
nuisance regression within gray matter voxels, consistent with our previous approach
[40]. The regressors included mean time series from white matter, CSF, and gray
matter, motion parameters from realignment, and a linear drift term. All regressors
were z-scored and included an intercept, and were regressed out from the gray matter
time series via linear regression. The resulting residuals were used for subsequent FC
analysis.

We computed two types of FC matrices for each fMRI sessions (seven sessions
total: one from the intial study visit and six from three repeated sessions on Day 1 and
Day 2). First, we calculated pairwise correlations among four key ROIs—two TMS-
targeted seed OFC regions and two LPFC targets—yielding a 4 × 4 FC matrix per
session, used in the analyses shown in Figure 2. Second, we computed FC between
the four experimental ROIs and all 116 regions from the AAL atlas [81] for the cVAE
analysis below. Due to missing signals in some atlas regions, the final FC matrix had
a final dimensionality of 4× 102.

4.16 Latent embedding modeling of functional connectivity of
resting-state fMRI

To evaluate whether cTBS modulates brain network activity differently relative to
sham, we applied a conditional variational autoencoder (cVAE) to brain functional
connectivity derived from resting-state fMRI data. Our goal was to learn a low-
dimensional latent representation that captures stimulation-induced variation while
accounting for individual differences.

Although prior applications of VAEs and cVAEs in fMRI have largely focused on
identifying individuals based on brain activity patterns [49, 50], our approach uses
participant identity as a conditioning factor in order to isolate stimulation-induced
network changes, rather than to model individual identity per se. Specifically, we
conditioned both the encoder and decoder on participant identity to model subject-
specific variance during reconstruction of the FC vectors. This allowed the model to
account for stable inter-individual differences and focus on condition-specific effects
(null, sham, or cTBS).
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For each of the four ROIs, we extracted its functional connectivity (FC) pat-
tern—defined as its correlation with all AAL regions—and used it as input to a
separate cVAE model. Each model learned a latent space capturing variation in FC
patterns across sessions, conditioned on individual identity. The input to the model
consisted of the FC vector (X ∈ R102) and a one-hot encoded participant identity
(Y ∈ R48), both of which were provided to the encoder and decoder (Figure 6). Of
the 48 participants, 5 sessions were missing, resulting in a total of 331 sessions used
for training.

The cVAE was implemented in PyTorch (version 2.7.0). The encoder first applies
a fully connected layer (64 units, ReLU activation), followed by two linear layers that
output the mean and log-variance of the latent distribution (µ, log σ2 ∈ R10). Latent
vectors are then sampled using the reparameterization trick:

z = µ+ ϵ · exp(0.5 · log σ2), ϵ ∼ N (0, I)

The decoder receives the concatenation of z and the condition Y , passing it through
a hidden layer (ReLU, 64 units) and outputs the reconstructed FC pattern vector. The
model was trained using the Adam optimizer (learning rate = 3e-4). The loss function
combined mean squared error for reconstruction and the KL divergence between the
approximate posterior and the standard Gaussian prior:

L = MSE(x, x̂) +DKL(q(z|x, y) ∥ p(z))

To quantify TMS effects, we calculated the Euclidean distance between each ses-
sion’s latent embedding (for cTBS or sham) and that of the null condition baseline.
This distance served as a proxy for the degree of deviation from unstimulated resting-
state activity. Because the latent space is optimized to capture meaningful variation
in functional connectivity while controlling for individual differences, larger distances
were interpreted as reflecting stronger TMS-induced modulation.

One important consideration in our analysis was the inherent imbalance between
sham and cTBS sessions due to the experimental design. For participants without
missing data, each contributed two cTBS sessions and four sham sessions. As a result,
the cVAE may have become better optimized to the FC patterns of sham sessions,
since all sessions were used simultaneously during training. To address this potential
bias, we repeated the cVAE training for each ROI using a resampling strategy. Specif-
ically, during each training epoch, we applied weighted random sampling of sessions,
assigning weights inversely proportional to the number of sessions per condition. This
ensured a more balanced representation of sham and cTBS conditions throughout
training. The repeated modeling yielded results consistent with those from the original
model, suggesting that our findings were not driven by session imbalance.
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Fig. S1: Posterior or anterior OFC-targeted cTBS disrupted value acqui-
sition during the first session. A. Discrimination accuracy over five runs during
the Day 1 task, plotted by TMS condition (cTBS vs. sham), session number (1st, 2nd,
3rd), and stimulation target (aOFC vs. pOFC). Line plots with error bars represent
observed data, while shaded regions indicate the 95% confidence intervals based on
simulated accuracy using posterior estimates of individual learning rates. B. Discrim-
ination accuracy across runs, separated by session number and the session order of
cTBS administration—that is, whether cTBS was applied during the 1st, 2nd, or 3rd

session of the three-session experiment.
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Fig. S2: Choice tests are influenced by learned stimulus values. A. Choice
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combination (log-scaled), with missing dots indicating unobserved combinations. B.
Probability of choosing the sated odor stimulus as a function of the estimated value
difference between the sated and non-sated options (wSA−wNS). Dot size reflects the
number of trials (log-scaled) at each value bin.
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lations between selective satiation effect and choices of sated odor.

26



1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

R = 0.56, p = 4.8e−13

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
pre−meal (set A)

po
st

−m
ea

l (
se

t A
)

R = 0.25, p = 0.0022

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
pre−meal (set A)

po
st

−m
ea

l (
se

t B
)

R = 0.5, p = 2.9e−10

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
post−meal (set A)

po
st

−m
ea

l (
se

t B
)

A B

C

sham-cTBS

sham-sham
cTBS-sham

Fig. S4: Scatter plots showing correlations in the proportion of sated odor
choices across different sessions and odor sets. A. Correlation between pre-meal
and post-meal choices for odors in Set A. B. Correlation between pre-meal choices
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Fig. S5: Model fit evaluation across stimulation sites and conditions for
Day 2 TMS effect. A. Across-participant correlation between the mean fitted choice
probability and the actual mean choice rate for each subject, shown separately for
aOFC (left) and pOFC (right) groups. Each dot represents a single subject, colored by
condition. The dashed diagonal line indicates perfect correspondence between model
predictions and behavior. B. Receiver operating characteristic (ROC) curves for pre-
dicting trial-level choices from model-estimated probabilities, shown separately for
each stimulation site and condition. The area under the curve (AUC) indicates the
model’s discriminative ability; higher curves reflect better separation between choice
= 1 and choice = 0. Dashed line represents chance-level performance.
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Fig. S6:Raw data for Day 2 TMS effect on sated odor choices. Choice behavior
for sated odors before and after the meal, separated by stimulation site (aOFC vs.
pOFC) and stimulation condition (sham-sham vs. cTBS-sham). Each boxplot displays
the distribution of choice probabilities across participants, with lines connecting Pre
and Post values for the same participant within each condition. Dots represent Pre-
meal choices, and triangles represent Post-meal choices. A reduction in choice from
Pre to Post indicates a successful selective devaluation effect.
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Fig. S7: Model fit evaluation across stimulation sites and conditions for
Day 1 TMS effect. A. Across-participant correlation between the mean fitted choice
probability and the actual mean choice rate for each subject, shown separately for
aOFC (left) and pOFC (right) groups. Each dot represents a single subject, colored by
condition. The dashed diagonal line indicates perfect correspondence between model
predictions and behavior. B. Receiver operating characteristic (ROC) curves for pre-
dicting trial-level choices from model-estimated probabilities, shown separately for
each stimulation site and condition. The area under the curve (AUC) indicates the
model’s discriminative ability; higher curves reflect better separation between choice
= 1 and choice = 0. Dashed line represents chance-level performance.
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Fig. S8:Raw data for Day 1 TMS effect on sated odor choices. Choice behavior
for sated odors before and after the meal, separated by stimulation site (aOFC vs.
pOFC) and stimulation condition (sham-sham vs. cTBS-sham). Each boxplot displays
the distribution of choice probabilities across participants, with lines connecting Pre
and Post values for the same participant within each condition. Dots represent Pre-
meal choices, and triangles represent Post-meal choices. A reduction in choice from
Pre to Post indicates a successful selective devaluation effect.
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Fig. S9: Relationship between perceived TMS discomfort and intensity and
sated odor (SA) choices. A. Correlation between SA choices and TMS ratings,
separated by Day 2 TMS conditions (sham-cTBS vs. sham-sham) and TMS targeted
regions (aOFC, pOFC). A positive correlation was observed between TMS ratings and
SA choices in the aOFC group, but including ratings of TMS perception into the regres-
sion models did not alter the observed TMS effects on SA choices. B. Same as A, but
focus on Day 1 TMS effect (sham-sham vs. cTBS-sham). C. Scatter plot showing the
relationship between the condition-wise difference in SA choices (sham–cTBS minus
sham–sham) and the corresponding difference in TMS intensity ratings on Day 2. A
significant positive correlation was observed in the aOFC group (Pearson’s r = 0.70,
p = 7.9×10−8). D. Same as B, but focus on Day 1 TMS effect (sham-sham vs. cTBS-
sham). Shaded areas represent 95% confidence intervals estimated using robust linear
regression. Marginal distributions are shown on the top and right axes. Pearson cor-
relation coefficients (R) and p-values are reported for each TMS condition.
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[62] Öngür, D. & Price, J. L. The organization of networks within the orbital and
medial prefrontal cortex of rats, monkeys and humans. Cerebral cortex 10, 206–
219 (2000).

[63] Echevarria-Cooper, S. L. & Kahnt, T. Anatomical connectivity-based parcellation
of the human orbitofrontal cortex. Behavioral Neuroscience In press.

[64] Tolman, E. C. Cognitive maps in rats and men. Psychological review 55, 189
(1948).

[65] O’keefe, J. & Nadel, L. The hippocampus as a cognitive map (Oxford university
press, 1978).

[66] Kidd, C. & Hayden, B. Y. The psychology and neuroscience of curiosity. Neuron
88, 449–460 (2015).

[67] Rich, E. L. & Wallis, J. D. Spatiotemporal dynamics of information encoding
revealed in orbitofrontal high-gamma. Nature Communications 8, 1139 (2017).

[68] Murray, E. A., O’Doherty, J. P. & Schoenbaum, G. What we know and do not
know about the functions of the orbitofrontal cortex after 20 years of cross-species
studies. Journal of Neuroscience 27, 8166–8169 (2007).

[69] Delamater, A. R. The role of the orbitofrontal cortex in sensory-specific encoding
of associations in pavlovian and instrumental conditioning. Annals of the New
York Academy of Sciences 1121, 152–173 (2007).

[70] Panayi, M. C. & Killcross, S. The role of the rodent lateral orbitofrontal cortex in
simple pavlovian cue-outcome learning depends on training experience. Cerebral
Cortex Communications 2, tgab010 (2021).

[71] McDannald, M. A., Saddoris, M. P., Gallagher, M. & Holland, P. C. Lesions of
orbitofrontal cortex impair rats’ differential outcome expectancy learning but not
conditioned stimulus-potentiated feeding. Journal of Neuroscience 25, 4626–4632
(2005).

[72] Harlow, H. F. The formation of learning sets. Psychological review 56, 51 (1949).
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